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A B S T R A C T   

Ice jams pose a major flood hazard in communities along northern rivers, resulting in high backwater levels and 
overbank flooding during ice-cover breakup. Mitigation measures, including large-scale projects by government 
agencies and individual actions by asset owners, can help reduce flood risk and protect human life and assets. 
This study examines ice-jam flood risk and explores the effectiveness of adaptive strategies in mitigating such 
risks in Fort McMurry, Canada. It evaluates the effectiveness of top-down (government-led artificial breakup) and 
bottom-up (resident-led flood-proofing) strategies, comparing the Rational Choice Theory (RCT) and the Pro-
tection Motivation Theory (PMT) models. The objective is to explore the potential enhancements to the ice-jam 
flood risk model through the integration of the PMT as a decision-making framework under uncertainty. This 
study seeks to assess whether and to what extent such integration can improve the modeling of ice-jam flood risk. 
The findings highlight the benefits of incorporating socio-economic factors in the PMT model. Economic factors, 
such as income tax and the cost of flood-proofing, shape overall flood risk, especially when artificial breakup 
measures are not implemented. The study emphasizes the importance of considering heterogeneity in decision- 
making processes and diverse characteristics of individuals when designing flood risk management strategies. 
Response efficacy and self-efficacy coefficients are significant factors influencing flood risk and the adoption of 
flood-proofing measures. Enhancing individuals’ belief in their actions’ effectiveness and their confidence in self- 
protection contributes to more effective flood risk management. These findings inform the development of more 
effective flood risk management strategies.   

1. Introduction 

Ice jams can be a major flood hazard in communities along many 
northern rivers. During ice-cover breakup, the damming effect of ice 
jams due to the accumulation of rubble ice along rivers can cause very 
high backwater levels and overbank flooding. Important characteristics 
of ice-jam flooding, in comparison to open-water floods, is the rapidity 
of the formation of ice jams and subsequent backwater staging making 
such events very difficult to forecast with very little response time to 
prepare and counter the impacts of such events. Also, small changes in 
the morphology of ice jams, in terms of the amount of rubble or slush ice 
that can accumulate in the jams and the location of the jam lodgements, 
can exacerbate the flooding situation. Oftentimes, flood water levels for 
certain exceedance probabilities can exceed those of open-water floods, 

making it crucial that such events are included in determining thresh-
olds of flood levels used in the design and installation of infrastructure 
and construction developments. Measures to help mitigate ice-jam 
flooding can help reduce those threshold levels and reduce the risk to 
human assets and life that can ensue from such flooding. These measures 
can be in the form of large-scale, top-down projects implemented and 
operated by government agencies (e.g., the artificial breakup of the ice 
cover) or in individual, bottom-up measures that can be implemented by 
the owners of such assets (e.g., flood-proofing of buildings). Both top- 
down and bottom-up measures do involve decisions that have to be 
made on the degree of mitigation carried out related to social prefer-
ences and values but also within the constraints of financial budgets, 
policy regulations, and land availability. A modeling approach is 
required that not only views the physical and engineering aspects of the 
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design and construction of mitigation measures but also considers the 
social and cultural milieu in which these measures are being placed. 

Several studies have investigated the influence of dynamic adaptive 
behavior on estimating flood vulnerability and risk levels, incorporating 
different social theories such as the Rational Choice Theory (RCT) and 
Protection Motivation Theory (PMT) (Erdlenbruch and Bonté, 2018; 
Grothmann and Reusswig, 2006; Han et al., 2022; Richert et al., 2017). 
The RCT emphasizes that individuals make decisions based on a rational 
assessment of costs and benefits, aiming to maximize their self-interest 
(Jager et al., 2000). On the other hand, the PMT focuses on how in-
dividuals with bounded rationality perceive and respond to threats 
(Rogers, 1975). This theory suggests that individuals are motivated to 
protect themselves when they perceive a threat to their well-being. 
Motivation is influenced by two key factors: threat appraisal and 
coping appraisal. Threat appraisal involves evaluating the severity of the 
threat and the individual’s vulnerability while coping appraisal entails 
assessing the effectiveness of protective measures and the individual’s 
self-efficacy in implementing them. However, despite the growing body 
of literature on flood risk management, there remains a gap in under-
standing the importance of incorporating bounded rationality (e.g., 
PMT) into flood risk modeling, particularly in the context of ice-jam 
floods. 

Agent-based modeling is a valuable bottom-up approach in modeling 
water-human systems, particularly in capturing individual decision- 
making, heterogeneity of human decision-making, and feedback mech-
anisms between individuals across various scales (Epstein, 1999; 
Ghoreishi et al., 2023; Ghoreishi, Razavi, et al., 2021; Wilensky and 
Rand, 2015). These models allow for the representation of 
individual-level behaviors, enabling a fine-grained analysis of the dy-
namics and interactions between different actors, and explore/explain 
the emergent phenomena at the system scale. With the individual-level 
representation, heterogeneity can be incorporated into agent-based 
models, allowing for the exploration of how diverse characteristics 
and preferences influence collective outcomes. Furthermore, 
agent-based models excel in capturing feedback loops between in-
dividuals and their environment across various scales (e.g., interactions 
between residents at a local scale and government at a large scale), 
enabling the study of how individual behaviors and interactions prop-
agate and shape emergent phenomena. 

The use of agent-based modeling in the context of flood risk has 
gained considerable attention in recent years. Several studies have 
employed agent-based models to investigate the dynamics and com-
plexities of flood risk management, considering the interactions between 
individuals, their decision-making processes, and the physical environ-
ment (Anshuka et al., 2022; Haer et al., 2016, 2017). While past studies 
have contributed valuable insights to the broader understanding of flood 
risk, a critical research gap remains in the specific domain of ice-jam 
flood risk. In fact, there is a need for further research that integrates 
the PMT into agent-based models to explore the potential enhancements 
to the ice-jam flood risk model. The selection of PMT is grounded in its 
proven effectiveness in representing human decision-making responses 
to floods by the past studies (Bubeck et al., 2012; Grothmann and 
Reusswig, 2006; Koerth et al., 2013). In comparison to other bounded 
rational theories, such as the theory of planned behavior, these studies 
on flood risk consistently highlights PMT as a more fitting representation 
of human decision-making dynamics under conditions of uncertainty 
and limited information. Additionally, more studies are needed to 
investigate the interaction across scales in the context of flood risk, such 
as the interplay between local-scale residents’ adaptation and 
basin-scale government adaptation. Bridging these gaps in the literature 
will provide a more comprehensive understanding of ice-jam flood risk 
and enhance the effectiveness of flood risk management strategies in 
these contexts. 

This study builds upon the methodology developed by Ghoreishi and 
Lindenschmidt (2024), where they constructed an agent-based model to 
evaluate ice-jam flood risk incorporating top-down (i.e., artificial 

breakup by governments) and bottom-up (i.e., flood-proofing by resi-
dents) adaptive strategies. The decision-making processes of both resi-
dents and the government were guided by the RCT. Also, individual 
behaviors were influenced by the potential reduction in flood risk 
through the artificial breakup, while the government’s actions were 
influenced by the potential risk reduction through flood-proofing at the 
system level. 

The objective of this study is to explore the potential enhancements 
to the ice-jam flood risk model, previously developed model by Ghor-
eishi and Lindenschmidt (2024), through the integration of the PMT as a 
decision-making framework under uncertainty. This study seeks to 
assess whether and to what extent such integration can improve the 
modeling of ice-jam flood risk with the case study of the Athabasca River 
at Fort McMurray. By comparing the model outputs under both the RCT 
and PMT, this research seeks to assess the impact of different social 
theories on the model response and understand how they shape flood 
risk management outcomes. Furthermore, a sensitivity analysis is con-
ducted to explore the significance of socio-economic factors in the model 
and evaluate their influence on the overall results. Ultimately, this study 
aims to provide insights into the implications of alternative social the-
ories, such as the PMT, on the model output and its associated un-
certainties, contributing to a more realistic understanding of ice-jam 
flood risk and informing more effective flood risk management 
strategies. 

2. Methodology 

2.1. Description of the agent-based model for ice-jam flooding in Fort 
McMurry 

The study site is the Athabasca River at Fort McMurray. This part of 
the Athabasca River is quite conducive to ice jamming since there is a 
large change in the river’s fluvial geomorphology along the stretch, 
where water flows from a relatively steep and narrow stretch upstream 
of the town’s bridge (See Fig. 1) to a flatter, wider downstream stretch. 
The downstream stretch has many islands, sandbars, and channel con-
strictions (between islands and riverbanks) providing areas where the 
ice rubble running down the river can easily lodge and jam. Certain 
characteristics of the tributary, the Clearwater River, increase the 
severity of ice jamming and flooding in the Athabasca River. For one, the 
Clearwater River’s slope is much flatter than that of the Athabasca River 
allowing backwater to flow from the Athabasca River into the tributary 
when an ice jam forms on the Athabasca River. The backwater flow also 
reduces flow velocities in the Athabasca River allowing accumulated ice 
to remain lodged in the ice jams longer during floods. For another, the 

Fig. 1. Athabasca and Clearwater rivers at Fort McMurray and its ice- 
jam formation. 
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banks of the lower Clearwater River are relatively low allowing this 
backwater flow to overtop its banks and inundate the floodplain on 
which downtown Fort McMurray lies. 

In the study by (Ghoreishi and Lindenschmidt, 2024), the researchers 
focused on ice-jam risk assessment in the Athabasca River region. To 
simulate ice-jam processes, they used RIVICE, which is a 
one-dimensional, hydrodynamic, and river-ice hydraulic model. It sim-
ulates variations in the longitudinal direction of a river while averaging 
variations in the lateral and depth directions. The model incorporates 
the dynamic wave of the St. Venant equations, allowing for the simu-
lation of backwater flow. It includes processes related to river ice, such 
as the generation of border ice, frazil ice, and consolidated ice covers. 
RIVICE has been successfully used for various applications, including 
forecasting ice-jam flooding (Lindenschmidt et al., 2019), calculating 
ice-jam flood hazard (Lindenschmidt, 2023), and assessing the effec-
tiveness of mitigation measures for ice-jam flood risk reduction (Lin-
denschmidt, 2024). The study also estimated ice-jam flood risk by 
assessing the potential economic damages caused by flood events. This 
involved estimating flood depths and extents using water level outputs 
and applying a depth-damage relationship to estimate damages to 
buildings. 

To evaluate the dynamic ice-jam flood risk, an agent-based modeling 
approach was employed. The model incorporated human adaptation 
behaviors, including artificial breakup and flood-proofing. Two types of 
agents, residents and the government, were modeled based on rational 
decision-making. Residents considered the benefit-cost ratio to decide 
whether to implement flood-proofing measures, while the government 
used the same ratio to determine whether to carry out artificial 
breakage. The interactions between residents and the government 
influenced the overall flood risk. 

2.2. Bounded rationality for ice-jam flooding in Fort McMurry 

To explore the improvement of the ice-jam flood risk model devel-
oped by Ghoreishi and Lindenschmidt (2024), the residents’ adaptation 
decision-making process in this study was modeled using the PMT, 
which captures bounded rationality (See Appendix for the full descrip-
tion of the model based on ODD + D protocol). According to the PMT, 
residents make decisions based on threat appraisal and coping appraisal. 
Threat appraisal involves evaluating the severity and probability of 
ice-jam flood events, represented by flood risk in this study. Coping 
appraisal includes perceived response efficacy, perceived self-efficacy, 
and the costs associated with adaptation measures. 

This study incorporated two supplementary factors, namely social 
network and appraisal of past flood experience, recommended by pre-
vious studies (Erdlenbruch and Bonté, 2018; Haer et al., 2019). Social 
network represents the influence of other agents on an individual’s 
decision-making regarding risk reduction measures. Past flood experi-
ence reflects how individuals learn from previous ice-jam floods and 
adjust their risk-reduction behaviors. To model the residents’ 
decision-making process, a logit model was used. This model calculates 
the probability of one event out of two alternatives, assuming that the 
logarithm of the odds of the event occurring is a linear combination of 
independent factors (socio-economic factors in this study). The logit 
(logistic) model has been effectively used in various studies to model 
individuals’ adaptation to flood and drought (Erdlenbruch and Bonté, 
2018; Uddin et al., 2014). Eq. 1 represents the probability of residents 
adopting risk reduction measures for a specific agent at a given time. For 
each successive simulation time loop, a random number is generated for 
each agent, ranging from 0 to 1. If this number is lower than the 
calculated probability for residents adopting risk reduction measures 
(also ranging from 0 to 1), the agent decides to adopt flood-proofing. 
This stochastic approach allows for the incorporation of the 
complexity of human decision-making and factors not explicitly 
included in the model, such as beliefs, introducing uncertainty into the 
adaptive behavior of the residents. 

Pi,t =
1

1 + e− (β0+β1 .(FRi,t)+β2 .(CP)+β3 .(REi)+β4 .(SEi)+β5 .(FEi,t)+β6 .(SNi,t))
(1) 

In this equation, FRi,t($) represents the flood risk for agent i at time t, 
CP($) denotes the cost of flood-proofing for agents, and β0 is a constant 
term. The coefficients β1 to β6 are the weights associated with the socio- 
economic variables, namely flood risk, cost of flood-proofing, response 
efficacy (REi), self-efficacy (SEi), flood experience (FEi,t), and social 
network (SNi,t), respectively. RE and SE vary between 0 and 1. The socio- 
economic variables are considered as independent factors in the model, 
and the values of response efficacy, self-efficacy, and weights are 
sampled from a normal distribution for agents in the model setup, 
following previous studies (Bertella et al., 2014; Du et al., 2017; Marino 
et al., 2008). The flood experience variable is updated for each resident 
(i.e., agent i) by the difference between their observed level of water and 
the averaged historical water level data from 40 years ago (based on the 
model timespan developed by Ghoreishi and Lindenschmidt (2024)) due 
to ice-jam flooding events. This process allows for capturing the resi-
dents’ past exposure to ice-jam flooding and facilitates modeling of their 
adaptation decisions based on their previous water level conditions. 

The social network, as given by Eq. (2), is calculated as the ratio of 
the number of agents in the social network who have adopted risk- 
reduction measures (Ai,t) in the specified radius to the total number of 
agents in the same radius (Ni), following the study by Du et al. (2017). 
This social network implies that agents are influenced by their con-
nected agents’ decisions. 

SNi,t =
Ai,t

Ni
(2)  

3. Sensitivity analysis 

To address the inherent stochasticity of the agent-based model and 
the challenges associated with a sensitivity analysis (see Ghoreishi, 
Sheikholeslami, et al., 2021), we performed comprehensive sensitivity 
analyses to ensure the robustness and reliability of our findings. We 
employed a multi-run approach, running the model multiple times with 
varying sets of socio-economic factors, ranging from 1 to 1000 repeti-
tions. This rigorous approach allowed us to comprehensively assess the 
impact of stochasticity on the model outputs and obtain robust and 
reliable results. By capturing the variability inherent in the stochastic 
model, we aimed to provide a more comprehensive understanding of the 
system dynamics and enhance the validity of our analysis. 

In addition to the multi-run analysis, we conducted a global sensi-
tivity analysis to identify the most influential parameters within the 
agent-based model. With the potential ranges of the model parameters 
(as outlined in Table 1), we assessed the impact of model parameters on 
the model outputs. To achieve this, we utilized the Variogram Analysis 
of Response Surfaces (VARS) framework, which combines derivative- 
based and variance-based approaches commonly employed in the 
global sensitivity analysis (Razavi and Gupta, 2016). In our study, we 
focused on ice-jam flood risk and newly adapted residents (averaged 
over time) as the model responses. The VARS sampling strategy was 
implemented with a sampling setting of 50 stars and a sampling reso-
lution of 0.1, resulting in a total of 5000 model runs (Razavi and Gupta, 
2016 provides further details on the VARS sampling strategy). The 
parameter ranges were determined by localized information specific to 
our case study. (CBC, 2019; Fixr, 2022). 

By conducting these sensitivity analyses, including the multi-run 
analysis and global sensitivity analysis using VARS, we obtained 
robust and comprehensive insights into the behavior of the agent-based 
model and the influence of various socio-economic factors and param-
eters. These analyses enhance the reliability and validity of our findings 
and contribute to a more rigorous understanding of the system dynamics 
under study. 
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4. Scenario analysis 

To gain a deeper understanding of the agent-based model under 
different theoretical frameworks, we conducted scenario analyses by 
defining distinct scenarios. Fig. 2 illustrates the socio-economic sce-
narios implemented in the agent-based model under the RCT and PMT. 
These scenarios were created based on two primary categories, char-
acterized by varying levels of socio-economic factors. For each category, 
we assigned values to represent low and high levels of these factors, 
allowing us to explore their influence on the model outcomes. Specif-
ically, we performed the scenario analysis on the agent-based model 
under the RCT using the following scenarios:  

• Scenario A: This scenario represents a favorable economic situation 
with high-income tax and a low cost of flood-proofing for residents 
facilitated by government subsidies. In this scenario, we set the 
values of high-income tax and low cost of flood-proofing at 
$1700,000 and $200, respectively.  

• Scenario B: This scenario reflects an unfavorable economic situation 
with low-income tax and a high cost of flood-proofing for residents 
despite government subsidies. Here, we defined the values of low- 
income tax and high cost of flood-proofing as $1600,000 and 
$1800, respectively. 

To perform scenario analysis on the model under the PMT, we 
further subcategorized scenarios A and B. This was done by 

Table 1 
The ranges of model parameters for the global sensitivity analysis.  

Model Parameters Units Lower Bound Upper Bound 

Income Tax $  1500000  1800000 
Cost of flood-proofing $  200  2000 
Mean of a normal distribution for individual risk coefficient -  0  1 
Mean of a normal distribution for cost of flood-proofing coefficient -  0  1 
Mean of a normal distribution for response efficacy coefficient -  0  1 
Mean of a normal distribution for self-efficacy coefficient -  0  1 
Mean of a normal distribution for flood experience coefficient -  0  1 
Mean of a normal distribution for social network coefficient -  0  1 
Mean of a normal distribution for self-efficacy -  0  1 
Mean of a normal distribution for response efficacy -  0  1 
Heterogeneity (standard deviations of normal distributions) -  0  0.3  

Fig. 2. Socio-economic scenarios on the agent-based model under rational choice theory and protection motivation theory.  
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introducing additional variability in the social factors through means 
of a normal distribution for the response efficacy coefficient, self- 
efficacy coefficient, flood experience coefficient, social network co-
efficient, self-efficacy, and response efficacy. The economic factors 
were defined as means of a normal distribution for the individual risk 
coefficient and cost of the flood-proofing coefficient. Thus, with the 
same values of other economic factors in each above scenario (A and 
B), we conducted another scenario analysis on the agent-based 
model under the PMT through the sub-categories of A and B:  

• Scenarios A1/B1: This scenario represents a favorable/unfavorable 
economic situation of scenario A/B with high social factors, high 
heterogeneity, and low economic factors. In this scenario, we defined 
the values of high social factors, high heterogeneity, and low eco-
nomic factors as 0.8, 0.3, and 0.2, respectively.  

• Scenarios A2/B2: This scenario represents a favorable/unfavorable 
economic situation of scenario A/B with high social factors, no het-
erogeneity, and low economic factors. In this scenario, we defined 
the values of high social factors, high heterogeneity, and low eco-
nomic factors as 0.8, 0, and 0.2, respectively.  

• Scenarios A3/B3: This scenario represents a favorable/unfavorable 
economic situation of scenario A/B with low social factors, high 
heterogeneity, and high economic factors. In this scenario, we 
defined the values of high social factors, high heterogeneity, and low 
economic factors as 0.2, 0.3, and 0.8, respectively.  

• Scenarios A4/B4: This scenario represents a favorable/unfavorable 
economic situation of scenario A/B with low social factors, no het-
erogeneity, and high economic factors. In this scenario, we defined 
the values of high social factors, high heterogeneity, and low eco-
nomic factors as 0.2, 0, and 0.8, respectively. 

By simulating the model under these defined scenarios, we aimed to 
examine how different socio-economic conditions, as represented by 
varying income tax and flood-proofing costs, influence the model out-
comes. The scenario analysis provides valuable insights into the impli-
cations of economic factors on flood risk management and the behavior 
of residents within the modeled environment. 

5. Result 

The trajectories of ice-jam flood risk and the adaptation of residents 
are compared for the boundaries of model factors from 2001 to 2021 
under the dynamic adaptation through the RCT and the PMT (Fig. 3). 
The simulation based on the PMT captures gradual changes between 
different model variables compared to the simulation based on the RCT, 
which covers the response surface in a more discrete way. According to 
Fig. 3a, the results of PMT and RCT follow a similar trend. Similar to the 
result of the study by Ghoreishi and Lindenschmidt (2024), PMT also 
shows a regime shift attributed to the significant role of dynamic 
adaptation by governments and residents. Similar to the result of the 

study by Ghoreishi and Lindenschmidt (2024), the model under PMT 
also reveals that the dynamic adaptation of governments and residents 
can significantly influence abrupt changes and sudden shifts between 
two distinct system states—a phenomenon known as regime shifts 
(Scheffer et al., 2001). In simpler terms, perturbations in the model 
factors have the potential to induce a shift within the system, resulting in 
two states characterized by different patterns and trends in the dynamics 
of ice-jam flood risk. In contrast to the RCT model, the results of the PMT 
model exhibit higher variability in ice-jam flood risk across the sampled 
factors. Although the PMT model introduces more uncertainty, the 
bounded rationality in this model reflects a behavioral model that aligns 
better with reality (Epstein, 1999; Simon, 1991). Furthermore, the lower 
bound of uncertainty in the PMT model highlights the potential for a 
greater reduction in ice-jam flood risk when compared to the RCT 
model. This disparity can be attributed to the significant influence of 
socio-economic factors on human decision-making processes. 

According to Fig. 3b, the model simulations by the RCT and PMT also 
exhibit a similar trend from 2001 to 2021. As discussed by Ghoreishi and 
Lindenschmidt (2024), the high level of adaptation in 2001 can be 
justified by the elevated ice-jam flood risk and the occurrence of ice-jam 
floods in 1875, 1977, 1978, 1979, and 1997 (IBI and Golder, 2014), as 
well as the assumption in the model that no residents had undertaken 
flood-proofing before 2001. However, the model simulation by the PMT 
indicates a higher degree of uncertainty in capturing the socio-economic 
factors influencing human decision-making in 2001. After 2001, both 
the RCT and PMT simulations display similar variability. Although the 
total flood risk decreases in 2011, the PMT model shows an increase in 
newly adapted residents compared to the RCT model. This increase is 
attributed to the influence of social factors, which will be discussed 
further in the result of the scenario analysis. 

The results obtained from running the model multiple times with 
varying sets of socio-economic factors revealed a low variability 
attributed to the stochastic features of the model. As an example, Fig. 4 
shows the outcome of 1000 possible trajectories based on one specific set 
of socio-economic factors. This finding indicates that the impact of 
stochasticity on the model outputs is relatively minimal. Consequently, 
we can confidently perform GSA using a relatively low number of model 
repetitions. Thus, in this study, we chose 100 for model repetitions. By 
conducting the GSA with fewer repetitions, we can efficiently explore 
the sensitivity of the model to its parameters and identify the most 
influential factors driving the system dynamics. This approach saves 
computational resources and allows for a more efficient and streamlined 
analysis of the model’s behavior. 

Table 2 presents a comprehensive comparison of the parameter 
sensitivity analysis results for the agent-based model, considering two 
theoretical perspectives: RCT and PMT. The results indicate that eco-
nomic factors exhibit the highest level of sensitivity in both models. 
Similar to the findings of the model under the RCT, the model under the 
PMT identifies income tax as the most critical parameter influencing 

Fig. 3. The trajectories of (a) ice-jam flood risk and (b) the number of newly adapted residents in response to ice-jam flood risk by flood-proofing for the boundaries 
of model factors under the rational choice theory (RCT), and the protection motivation theory (PMT) from 2001 to 2021. 
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Fig. 4. The envelope of 1000 possible trajectories regarding the stochasticity in human decision-making based on one specific set of socio-economic factors.  

Table 2 
Rankings of the parameters using the sensitivity analysis. The most sensitive parameters for the model response show low values.   

Social Theories Rational Choice Theory Protection Motivation Theory  

Model Response Total flood risk Adapted Residents Total flood risk Adapted Residents 
Model Parameters Income tax 1 1 1 2 

Cost of flood-proofing 2 2 4 4 
Mean of a normal distribution for individual risk coefficient - - 2 3 
Mean of a normal distribution for cost of flood-proofing coefficient - - 3 1 
Mean of a normal distribution for response efficacy coefficient - - 9 9 
Mean of a normal distribution for self-efficacy coefficient - - 8 8 
Mean of a normal distribution for flood experience coefficient - - 10 11 
Mean of a normal distribution for social network coefficient - - 11 10 
Mean of a normal distribution for response efficacy - - 6 6 
Mean of a normal distribution for self-efficacy - - 7 7 
Heterogeneity - - 5 5  

Fig. 5. The trajectories of ice-jam flood risk and the number of newly adapted residents for scenarios A-A4 (a and b) and B-B4 (c and d) under the protection 
motivation theory from 2001 to 2021. 
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total flood risk. However, the coefficient of cost of flood-proofing sur-
passes income tax in terms of importance when considering the number 
of newly adapted residents. This suggests that individuals’ attention to 
the cost associated with flood-proofing plays a vital role in their adap-
tation decision, a notion supported by prior research in other regions 
(Botzen and Van Den Bergh, 2008; Kreibich et al., 2011). 

Moreover, the sensitivity analysis highlights the significance of het-
erogeneity as one of the key socio-economic factors affecting both total 
flood risk and the adoption of flood-proofing measures by residents. This 
observation aligns with previous research conducted by Brown and 
Robinson (2006), emphasizing the influence of heterogeneity in 
decision-making processes. By employing an agent-based modeling 
approach, this study effectively incorporates the diverse characteristics 
and decision-making behaviors of individuals, providing a valuable 
advantage over traditional approaches. 

Furthermore, the coefficients of response efficacy and self-efficacy 
emerge as important factors contributing to both total flood risk and 
the number of newly adapted residents. This finding is consistent with 
the studies conducted by Bubeck et al. (2012) and Grothmann and Patt 
(2005), which demonstrate the significance of response efficacy and 
self-efficacy in flood risk management strategies. It is noteworthy to 
highlight that we tracked the stability and convergence of the GSA re-
sults. The thorough analysis affirmed the reliability of the results 
obtained. 

Fig. 5 presents the results of the scenario analysis conducted on the 
agent-based model. The scenarios, labeled A-A4 and B-B4, examine the 
impact of varying income tax, cost of flood-proofing values, and other 
socio-economics factors. In scenarios A-A4 (Figures a and b) where in-
come tax is high and the cost of flood-proofing is low, the total flood risk 
is lower compared to the model under scenarios B-B4 (Figures c and d). 
Overall, within scenarios A-A4, the total flood risk exhibits a consistent 
trend across different scenarios, with similar values observed before 
2011. The model under scenarios A-A4 (Figures a and b), which incor-
porate high social factors (scenarios A1 and A2), demonstrates a lower 
total flood risk compared to scenarios with low social factors (scenarios 
A3 and A4). This discrepancy is attributed to a higher number of newly 
adapted residents in 2011. The presence of a substantial population 
adapting to flood-proofing measures contributes to the reduction in total 
flood risk beyond 2011. This finding indicates that even with low total 
flood risk, attention to social factors can lead to an increase in the 
number of residents adopting adaptive measures. For the model under 
scenarios A1 and A2, the number of newly adapted residents decreases 
in 2016 due to a smaller population remaining unadapted to flood- 
proofing measures. 

According to Figs. 5c and 5d, the model under scenarios B-B4 ex-
hibits a consistent trend for both total flood risk and newly adapted 
residents. Notably, the model under scenarios with high social factors 
(scenarios B1 and B2) showcases lower total flood risk values and higher 
numbers of newly adapted residents compared to scenarios with low 
social factors (scenarios B3 and B4). The results of the scenario analysis 
highlight the role of social factors in influencing both the total flood risk 
and the adoption of flood-proofing measures. The findings support the 
notion that considering and addressing social dynamics can lead to more 
effective flood risk management strategies (Aerts et al., 2018; Groth-
mann and Reusswig, 2006). 

6. Discussion 

6.1. Complexity versus uncertainty 

A crucial aspect in selecting or developing a water-human model is to 
determine the appropriate level of complexity that aligns with the ob-
jectives of evaluating management measures. The level of complexity 
directly impacts the model’s ability to reduce uncertainty, which refers 
to the disparities between observed data and simulated results. A more 
complex model encompasses a broader range of processes, potentially 

leading to reduced model uncertainty. However, an increase in 
complexity also introduces a higher number of parameters and vari-
ables, which may result in increased model uncertainty. Model uncer-
tainty quantifies the variation in output results resulting from changes in 
input data, such as parameter values and initial or boundary conditions. 
Also, a complex model can introduce the issue of over-parameterization 
that arises when the number of parameters and variables becomes 
excessive for the available data or the complexity of the system being 
modeled. Over-parameterization can complicate the calibration process, 
increase model uncertainty, and limit the model’s predictive power. It is 
essential to find a equilibrium between the complexity of the model and 
the number of parameters. This balance is critical to prevent over- 
parameterization, ensuring that the model accurately captures system 
dynamics without introducing unnecessary complexity or uncertainty. 

Snowling and Kramer (2001) proposed a hypothesis, addressing the 
relationship between model uncertainty, complexity, and sensitivity. 
According to their hypothesis, “model sensitivity increases with 
complexity due to the larger number of degrees of freedom and the 
interplay between parameters and state variables. Simultaneously, 
modeling uncertainty tends to decrease with increasing complexity, as 
more intricate models have the capacity to better simulate reality by 
incorporating more processes and minimizing simplifying assumptions” 
(Snowling and Kramer, 2001). This hypothesis can provide valuable 
insights into the trade-off between model complexity and uncertainty in 
water-human modeling. 

In this study, we conducted a comparative analysis of two theoretical 
frameworks, namely the RCT and PMT, for assessing ice-jam flood risk. 
The PMT model, in contrast to the RCT model, incorporates a higher 
level of complexity by considering a greater number of socio-economic 
factors. This enhanced model captures a more comprehensive decision- 
making process and aligns more closely with real-world conditions. 
However, it should be noted that the increased complexity of the PMT 
model introduces additional uncertainty and the potential issue of over- 
parameterization. As discussed in the results section, both theoretical 
frameworks demonstrate similar trends over the study period, with a 
few exceptions observed in the patterns of adapted residents. Further-
more, our analysis reveals the presence of regime shifts in the model 
outputs under both theoretical frameworks. 

Although this study confirms that increased model complexity can 
potentially elevate uncertainty, such a conclusion is not universally 
applicable. In fact, instances exist where heightened model complexity 
results in a reduction of uncertainty. A good example is found in a few 
agent-based models incorporating learning capabilities among agents (e. 
g., see Lin and Yang 2022). In these models, the evolving uncertainty, 
which may reduce over time, exhibits variability dependent on the 
specific structural attributes governing the learning capabilities of 
agents within the model (Karthe et al., 2021). Therefore, a compre-
hensive assessment of the relationship between model complexity and 
uncertainty necessitates a nuanced examination, taking into account 
domain-specific factors and structural intricacies inherent to the 
modeling framework under consideration. 

6.2. Implications for ice-jam flood risk management 

The understanding of model complexity, uncertainty, and the com-
parison of the different theoretical frameworks (RCT and PMT) can be 
valuable for informing flood risk management strategies. This knowl-
edge can be applied in the following ways:  

• The insights gained from assessing the trade-off between model 
complexity, and uncertainty can guide the selection of an appro-
priate modeling approach for flood risk management. Decision- 
makers can consider the level of complexity that aligns with their 
specific objectives and available data. They can also assess the trade- 
off between model performance and the interpretability and uncer-
tainty associated with more complex models. 
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• The comparison of different theoretical frameworks can shed light on 
the effectiveness of various adaptation strategies in managing flood 
risk. By examining the behavior of adapted residents and the pres-
ence of regime shifts in model outputs, decision-makers can gain 
insights into the dynamics of community response and the resilience 
of different adaptation measures. This knowledge can inform the 
development of targeted and context-specific strategies that consider 
both physical and socio-economic dimensions of flood risk. 

• The sensitivity analysis showed that economic factors, such as in-
come tax and the cost of flood-proofing, have a significant influence 
on flood risk. Understanding the importance of these factors can help 
prioritize resource allocation and policy interventions. Moreover, the 
analysis highlighted the role of heterogeneity in decision-making 
processes, emphasizing the need to consider diverse characteristics 
and behaviors of individuals when designing flood risk management 
strategies. Also, the coefficients of response efficacy and self-efficacy 
were found to be important factors affecting both flood risk and the 
adoption of flood-proofing measures. This indicates that enhancing 
individuals’ belief in the effectiveness of their actions and their 
confidence in their ability to protect themselves can contribute to 
more effective flood risk management. 

7. Conclusion 

Ice-jam floods pose a significant risk to communities along northern 
rivers, characterized by rapid formation and limited forecasting time. 
Mitigation measures are crucial to reduce the impact of such floods, 
which can be implemented through top-down government projects or 
bottom-up individual actions. Understanding the decision-making pro-
cess and incorporating bounded rationality, such as the Protection 
Motivation Theory (PMT), is essential in ice-jam flood risk modeling. 

To assess ice-jam flood risk, this study extends the previous study by 
Ghoreishi and Lindenschmidt (2024) by integrating the PMT into the 
developed agent-based model. Agent-based model is a valuable 
approach in modeling water-human systems as it captures individual 
decision-making, heterogeneity, and feedback mechanisms across 
scales. By comparing the model outputs under the Rational Choice 
Theory (RCT) and PMT, the effectiveness of top-down and bottom-up 
adaptive strategies in mitigating ice-jam flood risk is evaluated. The 
research also conducts a sensitivity analysis to assess the significance of 
socio-economic factors in the model under PMT and RCT. The findings 
of our study are as follows:  

• By comparing two theoretical frameworks, the study acknowledges 
the potential benefits of a more complex model (PMT model) that 
incorporates comprehensive socio-economic factors and represents 
provides a more accurate and reliable representation of ice-jam flood 
risk dynamics compared to the RCT model. However, it also ac-
knowledges the challenges that come with increased complexity, 
including higher uncertainty and the issue of over-parameterization. 
These insights contribute to a better understanding of the strengths 
and limitations of different modeling frameworks.  

• Both the RCT and PMT models exhibit similar trends over the study 
period, with some exceptions in the behavior of adapted residents. 
The results show a regime shift in ice-jam flood risk due to significant 
dynamic adaptation by governments and residents. This suggests 
that both frameworks can provide valuable insights into ice-jam 
flood risk assessment.  

• The sensitivity analysis underscores the significance of economic 
factors in shaping overall flood risk, particularly the income tax and 
the cost of flood-proofing, which emerge as crucial factors. Notably, 
the cost of flood-proofing exhibits greater influence when the gov-
ernment does not implement artificial breakup measures. Also, the 
result of the scenario analysis shows that despite a low overall flood 
risk, focusing on social factors can result in a higher rate of residents 
adopting adaptive measures.  

• The PMT model demonstrates the important role of socio-economic 
factors in ice-jam flood risk management. The analysis underscored 
the importance of heterogeneity in decision-making processes, 
emphasizing the necessity of taking into account the diverse char-
acteristics and behaviors of individuals when designing strategies for 
managing flood risk. The response efficacy and self-efficacy co-
efficients played a significant role in influencing flood risk and the 
adoption of flood-proofing measures. This suggests that improving 
individuals’ perception of the effectiveness of their actions and their 
confidence in their ability to protect themselves can positively 
impact flood risk management outcomes. 

The limitations of the study can be summarized as follows:  
• While the study integrates the PMT as an acceptable and well-known 

social theory in the flood context, it is important to acknowledge that 
other theories may also influence decision-making processes. The 
study focuses on the PMT and RCT as the guiding social theories, 
potentially overlooking the impact of additional theories on flood 
risk management outcomes. Thus, the future studies need to explore 
the influence of other social theories such the theory of the planned 
behavior on the ice-jam flood risk.  

• As with any modeling study, there are inherent uncertainties and 
assumptions associated with the agent-based model used in the 
analysis. The model’s accuracy and reliability depend on the un-
derlying assumptions and data availability. It is important to 
acknowledge these limitations and carefully interpret the model 
results.  

• The study’s findings and conclusions may be specific to the context 
and conditions considered in the analysis. The applicability and 
generalizability of the results to other regions or scenarios with 
different socio-economic factors and flood risk characteristics may be 
limited. Future research endeavors should systematically broaden 
their scope by focus on diverse case studies with distinct conditions. 
This methodological expansion is important to foster a more robust 
foundation for generalizing results. The incorporation of a wider 
range of cases will enhance the study’s capacity to explain over-
arching patterns and trends, thereby contributing to a more 
comprehensive and nuanced understanding of the phenomena under 
investigation.  

• Human decision-making processes are inherently complex and 
influenced by numerous factors, including cognitive biases, social 
norms, and external influences. While the study incorporates social 
theories to capture decision-making processes, it is challenging to 
fully represent the complexity and variability of human decision- 
making in a model. To address this challenge, future research 
should focus on accumulating a more extensive dataset through 
systematic observation. This enriched dataset will serve as a valuable 
resource for refining and enhancing the development of the model. 
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